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Abstract 

The method of object detection is done using neural networks which require large datasets 

of training images to train the network to detect these objects. There are currently no 

available datasets for the use of training a neural network to detect objects from afar as if it 

was a camera on a helicopter. Therefore, the use of synthetic data will need to be tested as 

an alternative to real data. Research has been done to investigate the current state of object 

detection and compare the two main object detector models: R-CNN and YOLO to find the 

most suitable model for this project. For the artefact, a neural network library has been 

attempted to be made to create an object detector inspired by the YOLO model to be trained 

and tested in a synthetic environment. However, due to time constraints, the library produced 

cannot create and train an object detector instead it can create a classifier. This classifier has 

been tested using the MNIST dataset and after 1000 iterations, it has been trained to get an 

accuracy of 91% when it was tested. The produced library can be added to and built upon in 

the future to be able to produce an object detector neural network and then it can be trained 

and tested using synthetic data. 
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Glossary  

VJ Detector – Viola-Jones Detector 
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1.0 Introduction  

The main problem to overcome when using object detection in cameras attached to 

helicopters is that the helicopter will be a lot further away from the objects and thus it makes 

it harder to see the objects. This means that the data used to train the detector will need to 

have a variety of angles, weather conditions and distances to detect objects in many scenarios 

that a helicopter will be in. It can be very difficult to acquire in real life and therefore an 

alternative method of producing data is needed. Synthetic data is currently used as an 

alternative in the car industry and are created in a synthetic environment to produce a large 

set of data with a variety of data. This project looks at replicating that concept but for cameras 

on helicopters. Looking at specifically whether synthetic data or a combination of synthetic 

and real data can help train an accurate detector that can also work in almost real-time.  

1.1 Aim 

Investigate and produce an object detector that can be used on helicopter cameras. 

1.2 Objectives 

- Research into the current state of object detection 

- Research and analyse the different methods of creating an object detector to find the 

best method for this project 

- Create an object detector that can take in both synthetic and real data 

- Modify the detector to improve accuracy and speed to work in almost real-time 

- Implement the object detector in a synthetic environment to test its viability  
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2.0 Background 

To test the quality of synthetic vs real data, an object detector needs to be built so that the 

datasets can train this detector. Therefore, multiple solutions of example models will need to 

be compared to decide on the best object detector for detecting objects from a helicopter 

camera. 

2.1 Viola-Jones Detector 

Before looking at any potential solutions for this project, the background of object detection 

is important to look at how the techniques have developed and changed over the years. In 

the initial stages of object detection, algorithms were used to detect objects in an image that 

was passed into it. In 2001, P. Viola and M. Jones created one of the first algorithms to detect 

human faces in real-time. This was a significant milestone for object detection because it was 

10 times faster than any other algorithms at the time. As a result of their contribution, the 

algorithm was named the Viola-Jones (VJ) detector after its creators. The VJ detector used 

sliding windows which search all potential locations of faces to see if a window contained a 

face (Viola & Jones, 2001). Figure 1 below shows the output of the VJ detector in which all the 

faces in the picture are outlined with a bounding box. This is the basic objective of any object 

detector. 

 

Figure 1: Output of the VJ detector on several test images from the MIT+CMU test set. 

2.2 Histogram of Oriented Gradients 

The Histogram of Oriented Gradients (HOG) was created by N. Dalal and B. Triggs in 2005. It 

was a version of the scale-invariant feature transform algorithm that was used on detecting 

pedestrians of varied sizes. It used a grid of cells of the same size and local contrast 

normalization which improved the accuracy of the detector. The HOG rescales the input 
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images whilst keeping the detection windows uniform and is an important base for future 

detectors (Dalal & Triggs, 2005).  

2.3 Deformable Part-Based Model 

As an extension of the HOG detector, the Deformable Part-Based Model (DPM) was created 

by P. Felzenszwalb and later improved greatly by the works of R. Girshick. The DPM was a 

model that was trained on how to split up an object into parts and thus detect these parts 

individually instead of looking for the object as a whole (Felzenszwalb, et al., 2008). Previously 

the filters used to detect parts of an object were manually determined but DPM utilises a 

supervised learning method that configures these filters automatically. An example of this is 

shown in figure 2 in which an image of a car is split into distinct parts such as the wheels and 

doors. These parts are detected using a yellow bounding box and the whole car is detected 

using a blue bounding box. 

 

Figure 2: Image of a car with the parts detected with bounding boxes by the DPM 

R. Girshick improved the accuracy of this method by using context priming, bounding box 

regression and hard negative mining techniques. Context priming makes use of the 
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surroundings around the object to determine what the object is likely to be. Bounding box 

regression uses prediction bounding boxes to reduce the potential area where the object is 

likely to be. The location of the prediction boxes is configured manually by the user based on 

the likely locations and sizes of the objects. A false positive may be produced by an algorithm 

when it believes that the output bounding box is correct when it is either not on the object or 

only on part of the object. Hard negative mining techniques take any false positives provided 

by training the algorithm and label them as negative results so that the algorithm learns that 

it does not contain an object (Felzenszwalb, et al., 2010).  

2.4 Convolutional Neural Networks 

2014 saw the start of the deep learning era with the proposal of regions with convolutional 

neural network (RCNN) by R. Girshick. RCNN produces a set of object candidate boxes that 

are rescaled and fed into a convolutional neural network (CNN). A neural network (NN) is a 

computational representation of the human brain in which a model consists of multiple layers 

of multiple nodes. An image is split into multiple sections and each node represents a section 

of the image. Each layer uses predefined weights and biases to calculate the output of that 

layer using the calculation: output = input * weight = bias. The image is processed by each 

layer in the model to produce an output which is then fed into the next layer. Once every 

layer has been processed the image output is produced in the form of nodes that represent 

an object. This is represented in figure 3 below (Khashei & Bijari, 2010).  

 

Figure 3: A representation of a neural network of layers and nodes 

A CNN is a version of a NN that uses convolutional layers and pooling layers alongside the 

standard fully connected layer found in neural networks. The convolutional layer uses filters 

to detect specific parts of the image such as edges and can modify the image to accentuate 
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certain parts such as making the image sharper. Some examples of filters are shown in figure 

4 below (Albawi, et al., 2017).  

 

Figure 4: Multiple examples of filters used in the convolutional layer 

The pooling layer uses filters on the pixel values produced by the convolutional layer. These 

filters simply use mathematically functions on each section of the image. For example, a max 

pool filter of 2x2 shown in figure 5 will take the max value of the 2x2 part of the image. So, a 

section of an image of 4x4 is reduced to a 2x2 section (Albawi, et al., 2017). 
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Figure 5: Example of a max pool 

2.5 Region proposal with convolutional neural networks 

R-CNN produced a significant performance increase and an improvement of the previous 

algorithms. Even though R-CNN was a massive improvement on previous algorithms, it 

produces around 2000 overlapped proposals per image which leads to a slow speed of 

detection (about 14 seconds per image) (Zou, et al., 2019). The RCNN model was then 

improved on the Fast RCNN and Faster RCNN to improve the speed of detection to make the 

models detect in almost real-time. 

2.6 You Only Look Once 

A different approach to object detection using NNs was proposed by (Redmon, et al., 2016). 

They called it You Only Look Once (YOLO) and as the name suggests, it uses a single neural 

network to produce prediction bounding boxes and classify the probabilities of an object 

being detected in one evaluation. A result of using a single neural network makes the model 

a lot faster than RCNN and can process 155 frames per second. This makes the model a lot 

more viable for real-time object detection (Redmon, et al., 2016). 

3.0 Analysis 

Many modern object detectors use CNNs over the previous detection models such as the VJ 

model and DPM as discussed in the background. This is because the accuracy and speed of 

these detectors are higher than the previous models. Beyond image detection, the previous 

models are not suitable for video detection analysis but helped provide the basis for the CNN 
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models (Jiao, et al., 2021).  As a result of this, it is only necessary to compare modern CNN 

based detectors for use in object detection. As described previously in the background, the 

two main detectors are the R-CNN and YOLO models.  

There is a multitude of different object detection models and to compare them all would be 

unnecessarily time-consuming since most object detectors have a base architecture similar to 

that of either R-CNN or YOLO. Therefore, the project will be looking at using R-CNN or YOLO 

as a base for the object detector whilst also recognising other minor changes to improve these 

architectures to create a better object detector for use in a helicopter camera. 

3.1 R-CNN 

Region proposals with convolutional neural network (R-CNN) was produced by R. Girshick. R-

CNN has three phases for object detection: producing regional proposals, feeding these 

proposals into a CNN to extract a fixed-length feature vector from each region and finally 

using the vectors in a set of class-specific linear SVMs (Girshick, et al., 2014). The first phase 

uses a selective search algorithm to create about 2000 region proposals on where a potential 

object could be in an image. The selective search uses an algorithm created by Felzenszwalb 

& Huttenlocher (2004) that segments the image based on comparing pixels to find edges and 

grouping similar pixels. The grouping is recursively done using a hierarchical algorithm that 

groups similar regions into larger regions, judging them on size and texture. From this, a set 

of boxes can be drawn around the segments that may contain an object (Felzenszwalb & 

Huttenlocher, 2004). This is shown in figure 6 below.  
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Figure 6: An example of a selection search used on an image to produce region proposals. 

The region proposals are all warped and resized to fit as input for a CNN. The output of the 

CNN is a 4096-dimension vector of features. The CNN used for R-CNN has five convolutional 

layers and 2 fully connected layers. In the final phase, the feature vectors are given a value 

using a support vector machine (SVM) that has been trained for that class (Girshick, et al., 

2014). An SVM is an algorithm that has been trained to classify data and output as a specific 

category of object.  

3.1.1 Fast R-CNN 

As mentioned in the background, R-CNN was improved to develop Fast R-CNN and Faster R-

CNN. Fast R-CNN improves R-CNN by taking the entire image and the proposals as input for 

the feature extractor CNN in which the whole image is processed with multiple convolutional 

and pooling layers to create a convolutional feature map. Using this feature map, a region of 

interest pooling layer extracts a feature vector. This feature vector is processed by a sequence 

of fully connected layers and then two output layers to estimate the probability value and the 

four values need to show the bounding box (Girshick, 2015).  

3.1.2 Faster R-CNN 

Faster R-CNN replaces the selection search algorithm with a region proposal network (RPN) 

which is a CNN that creates region proposals with a range of aspect ratios and scales. The RPN 

shares a set of convolutional layers with the detection CNN and uses different sized anchors 

to generate various sizes of proposals. These anchor boxes have 3 different scales and aspect 

ratios, thus using 9 anchor boxes to generate the region proposals (Ren, et al., 2017).  
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3.2 YOLO 

You Only Look Once (YOLO) is a method of object detection created by Redmon, et al. (2016) 

that uses a single neural network to predict bounding boxes and class probabilities in one 

single evaluation. This is considered an end-to-end method of object detection and therefore 

can be optimized at any stage of the detection pipeline. To do this, the input image is divided 

into grids of a predefined size. The grid cell that the object’s centre falls into is then associated 

with that object. It produces prediction bounding boxes from the grid associated with each 

object and the confidence scores for these boxes. YOLO does this for all classes of objects in 

the image at once and the confidence score determines how sure the model is that the 

prediction box contains an object. 5 values are stored in each bounding box. The first two are 

the x and y coordinates of the centre of the box relative to the associated grid cell. The height 

and width values are also stored but are relative to the image. Finally, a separate confidence 

value to the class confidence is stored alongside these values. This confidence value evaluates 

how accurate the bounding box is in comparison to the true original bounding box (Redmon, 

et al., 2016). This overview of YOLO is visually represented in figure 7 below. These values are 

stored together as a prediction tensor of size S x S x (B*5+C) where S is the number of grid 

cells, B is the number of bounding boxes per grid cell and C is the number of object classes to 

classify between (Redmon, et al., 2016). 

 

Figure 7: Visual representation of the YOLO pipeline. 
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3.2.1 YOLOv2 

YOLOv2 (or YOLO9000 as its sometimes referred to) is the successor to YOLO with significant 

changes to improve the recall and decrease the number of localization errors. The first change 

was to implement batch normalization into all the convolutional layers (Redmon & Farhadi, 

2017). Batch normalization calculates the mean (𝜇) and the variance (σ²) of the activation 

values. It then normalizes the activation vector of values (Z^) so that each node’s output is 

standardised across the normal distribution on the batch. Finally, a linear transformation is 

applied with two parameters to adjust the standard deviation and the bias (Huber, 2020).  

Another major change made was to use a high-resolution classifier. Previously in YOLO, the 

classifier was trained on images of a 224 x 224 resolution and then increase to 448 x 448 for 

detection. However, YOLOv2 trains the classifier on images of 448 x 448 resolution which 

allows the network to modify the filters to be more accurate on high-resolution images. On 

top of this change, YOLOv2 takes inspiration from Faster R-CNN and uses anchor boxes instead 

of the fully connected layer to predict bounding boxes. This means that YOLOv2 predicts over 

a thousand boxes per image in comparison to the 98 boxes that YOLO predicts. It has led to a 

slight decrease in accuracy but a higher recall rate which means that the model “has more 

room to improve” (Redmon & Farhadi, 2017). 

A new classification model called Darknet-19 is used in YOLOv2 to classify objects. It is similar 

to the VGG model and the model that was previously used in YOLO in that it uses 3 x 3 filters 

and after every pooling stage the number of channels is doubled. This model has 19 

convolutional layers and 5 max-pooling layers. It has a higher accuracy of 91.2% in comparison 

to 88% for the YOLO classifier and 90% for the VGG classifier (Redmon & Farhadi, 2017).  

The final difference between YOLOv2 and its predecessor is that it has been trained using a 

variety of input resolutions so that it can be a viable detector for a variety of image resolutions. 

The difference in the detections of the different resolutions is evident in table 2 below in which 

the accuracy and speed are compared to other models. This table shows that increasing the 

resolution will increase the accuracy but decrease the speed of detection (Redmon & Farhadi, 

2017). 
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Table 2: Table showing the speed and accuracy of YOLOv2 trained on different resolutions and other models. 

 

3.2.2 YOLOv3 

YOLOv3 is the successor to YOLOv2 and again has been modified to improve both speed and 

accuracy. One of the ways in which this has been done is by changing the way the classes are 

predicted. Previously the SoftMax algorithm was used to determine what classes may be 

contained in the bounding box but this is changed to a multilabel approach. The multilabel 

approach uses independent logistic classifiers such as binary cross-entropy loss which is used 

in the training stage (Redmon & Farhadi, 2018). 

Binary cross-entropy is calculated using the average of the log of corrected probabilities. 

Corrected probabilities are the predicted probability that the image contains an object from 

its original class. Because the probabilities are between 0 and 1 the log will always be 

negative, so the average of the logs must be multiplied by -1 to get the loss value (Saxena, 

2021). The use of binary cross-entropy improves the classification when there are multiple 

overlapping objects as SoftMax assumes “that each box has exactly one class which is often 

not the case” (Redmon & Farhadi, 2018). 

The feature extractor used in YOLOv2; Darknet-19 is improved in YOLOv3 by making it have 

53 convolutional layers instead of the 19 layers. When compared to the previous model and 

the ResNet-101 and 152 models, the accuracy is improved to 93.8% but runs a lot slower than 

Darknet-19 but still faster than the ResNet models. This is illustrated in table 3 below (Redmon 

& Farhadi, 2018). 
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Table 3: Accuracy and speed of the 2 Darknet and ResNet models used for feature extraction 

 

3.3 Comparison of accuracy 

The accuracy of object detectors is measured using the mean average precision (mAP). To get 

the mean average precision, the average precision (AP) is calculated for each image. To 

calculate the AP, the precision and recall need to be calculated. Precision is a way of 

calculating how accurate a prediction is by dividing the running total of true positives (TPs) by 

the running total number of TPs and false positives (FPs). The recall is the percentage of the 

found true positives out of all the possible true positives in the top N predictions. This is 

calculated by dividing the running total of TPs by the total of TPs and false negatives (FNs). 

The mathematical definitions are shown in figure 8 below (Hui, 2018). 

 

Figure 8: Mathematical definitions for precision and recall. 

To determine whether a prediction is correct, the Intersection Over Union (IoU) needs to be 

above 0.5. IoU is the comparison of the pre-defined bounding box (BB) and the prediction BB. 

It is calculated by dividing the area of overlap between the BBs and the area of union between 

the two BBs. This is illustrated in figure 9 below. The running average precision is plotted 

against the corresponding recall value in a graph similar to that in figure 10 below. Finally, the 

area under the curve is calculated to get the AP (Hui, 2018). 
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Figure 9: Example of calculating IoU for object detection 

 

Figure 10: Example graph of the precision vs recall value for the best predictions. 

YOLOv2 can have an mAP of up to 78.6 and Faster R-CNN can reach up to 76.4 mAP which is 

not a significant difference in accuracy. Juan Du (2018) stated that the reasons why YOLOv2 

has a high accuracy are because it uses global features and creates context clues to help find 
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the objects. This results in a lower chance of predicting false positives in the background of 

the image. On the other hand, R-CNN creates many background false positives. YOLOv2 also 

learns the representations of objects which makes it a lot more accurate at detecting objects 

in a wide variety of contexts/mediums. For example, generalizing from natural images to man-

made images such as artwork (Du, 2018). 

YOLOv2 has a lower accuracy at detecting smaller objects that are in groups together such as 

detecting people from afar who are in a large crowd. YOLOv2 also falls short when 

generalizing to objects in uncommon aspect ratios and configurations (Du, 2018). This is also 

backed up by Ye, et al. (2021) that found YOLO to be less accurate in extreme scenarios such 

as detecting small objects (Ye, et al., 2021).  

In a 2021 survey completed by Hakim & Fadhil (2021), they state that YOLO has an mAP of 

63.4 which is significantly less accurate than Faster R-CNN. This is contrary to the survey 

previously mentioned by Du (2018) who stated the precision of YOLO is higher than Faster R-

CNN with an mAP of 78.6. Even though the 2021 survey was completed more recently than 

the previous survey, Hakim & Fadhil (2021) only look at YOLO which is the predecessor to 

YOLOv2 (Hakim & Fadhil, 2021). Therefore, it is worth considering that both R-CNN and YOLO 

have multiple models with each successive model attempting to improve on the previous 

model. This means that when comparing which model to use, it is worth considering the 

iteration of that model that was used. Because of this, the changes made in the latter version 

of the models will need to be looked at when trying to make the model more accurate.   

3.4 Comparison of speed 

The speed of object detection can be crucial in deciding which model to use because often, 

100s of images may be needed to be passed through at once. Also, speed is important when 

using these models on videos and to be used in real-time. Typically, the speed of object 

detection is measured in frames per second (FPS). However, there is a trade-off on accuracy 

when trying to get a model to detect faster.  

The speed of R-CNN was increased in the later iterations, Fast R-CNN and Faster R-CNN. R-

CNN predicts over 1000 proposal bounding boxes and most of these boxes overlap. Because 

most of the prediction bounding boxes overlap, a lot of these boxes are unnecessary which 

makes this model inefficient for object detection when looking at the speed (Wang, et al., 
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2019). The speed was increased by replacing the selective search with a region proposal 

network that uses anchor boxes to produce prediction bounding boxes. As a result of this, 

Faster R-CNN can reach speeds of 18 FPS. Even though this sped up the model, Faster R-CNN 

is still not fast enough for real-time but fast enough for video detection.  

On the other hand, YOLO only predicts 100 bounding boxes per image which dramatically 

increases the speed of prediction and also produces fewer unnecessary prediction bounding 

boxes. As a result of this, YOLO can reach speeds of up to 155 FPS for Fast YOLO, 91 FPS for 

YOLOv2 at 288x288 resolution and up to 45 FPS for YOLOv3 at 320x320 resolution (Redmon 

& Farhadi, 2017) (Redmon & Farhadi, 2018). All these speeds are faster than Faster R-CNN 

because YOLO doesn’t use an RPN to predict bounding boxes and instead divides the image 

into grids and uses 5 anchor boxes instead of the 9 anchor boxes that R-CNN uses (Wang, et 

al., 2019).  

Taking the speeds into account, YOLO is the faster model and therefore will be a better choice 

if speed is necessary. 

3.5 Comparison of utility 

The final factor that determines the best model to use for object detection is the utility that 

each model is used. By looking at the usage of each model in different scenarios, the models 

can be compared based on which model will be best suited for this project. To do this, similar 

scenarios to detecting objects from a helicopter will need to be looked at to find out which 

model is best at detecting objects from afar. 

In a study of using object detection for detecting roofs from above, Musyarofah et al (2019) 

found that using Mask R-CNN resulted in an mAP of 90.14%. Mask R-CNN is a predecessor to 

Faster R-CNN that builds upon it by adding a small fully convolutional network (FCN) that 

predicts segmentation masks on the RoI of the objects. This FCN works alongside the 

classification and bounding box predictions to produce an output similar to that in figure 11 

below. These segmentation masks are computed using the output of the RoI classifier and 

provide a mask represented by floating-point numbers instead of binary numbers. These 

masks are then used to compute the loss in a more accurate way than using binary masks 

(Musyarofah, et al., 2019).  

 



21 
 

 

Figure 11: Illustration of the masks shown on roofs 

This study uses top-down images from UAVs which is very similar to the usage of a detector 

for helicopter cameras. Therefore this study shows that the use of Mask R-CNN is suitable for 

detecting objects from afar and therefore would be good at detecting objects from a 

helicopter camera. The issue with this study is that only images were fed into the object 

detector and there was no mention of the speed of the Mask R-CNN used. Even though the 

accuracy of Mask R-CNN in this scenario was high at 90.14%, this study does not test it against 

videos and therefore the accuracy of real-time detection is unknown. This means that it may 

not be suitable for real-time usage but is highly accurate for detecting objects in the sky on 

images.  
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A study that looks at real-time object detection completed by Chen et al. (2021) used YOLOv3 

as a base to build upon to detect objects in a database of static drone images. Even though 

the object detector was tested against images, it was deduced that YOLOv3 can be used in 

real-time at 30 FPS due to the low inference time (Chen, et al., 2021). Because drone images 

were used in this study the results will likely be similar to that of a helicopter camera since 

they are both airborne situations and require the detection of objects from a large distance. 

This means that YOLOv3 will be a suitable base architecture for real-time detection based on 

the results of this study. 

Another study that looks at real-time object detection is a study done by Raskar & Shah (2021) 

that looks at object detection to detect forged frames in videos. In order to meet the real-

time threshold for videos YOLOv2 was used. To detect forged frames, the objects have been 

rotated, flipped or scaled up and the object detector must detect the objects that may have 

been manipulated in one of these ways. The results of one of the videos used is shown in 

table 4 below in which the confidence score ranged from 0.95 to 0.99 and the FPS stayed 

consistent at 30 FPS (Raskar & Shah, 2021).  
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Table 4: Video Forgery detection results from a sample video 

 

The results for all tests followed the example test given above the confidence scores ranged 

from 0.95 to 0.99 for all tests and it is suggested that YOLOv2 is good at detecting “small, 

occluded stationary and moving objects with proper classification and localization” (Raskar & 

Shah, 2021). This is good for detecting objects from a helicopter camera because the objects 

are likely to be far away and therefore are smaller on the camera. It is also suitable for this 

project’s scenario because objects will need to be detected in all weather conditions and as a 

result may be occluded by precipitation which can be detected using YOLOv2. On top of the 

accuracy, the fact that YOLOv2 can do this in 30 FPS shows that it is viable for detecting objects 

in real-time and this is corroborated by the previous study on static drone image detection 

which also showed the suitability of YOLO based models at real-time object detection. 
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3.6 Chosen Model 

After looking at the differences between R-CNN and YOLO based models, the base 

architecture that will be used in this project is YOLO. This is because YOLO is a one-stage 

detector which makes the models a lot faster than R-CNN and therefore is more suited to 

real-time object detection. Real-time object detection is needed for this project because the 

objects will need to be detected whilst the helicopter is in flight. On top of using YOLO as a 

base, techniques such as batch normalization and using the Darknet classifier were used in 

the later iterations of YOLO to make the detection more accurate. 
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4.0 Research Methodology  

4.1 Waterfall Method 

There are a variety of methodologies that can be used in project management to help produce 

a product. A traditional approach to project management is to use the Waterfall Method. The 

Waterfall Method is a plan-driven method which has a heavy focus on the planning stages of 

project management and thus requires good communication from the clients on what they 

expect from the project. As a result, the Waterfall Method creates a strong structure with the 

project documented and planned from start to finish. This will likely consist of deadlines, 

responsibilities and work packages (Thesing, et al., 2021). The waterfall process is heavily 

based on planning and thus the planning helps with the understanding and the 

implementation of the project to produce a better result (Rubin, 2013).  An issue with the 

Waterfall Method is that if an issue were to occur throughout the development phase, then 

it is hard to make the necessary adjustments and therefore will make it harder to meet a 

working product (Evelin, et al., 2021). 

 

 

4.2 Agile Methods 

Agile methods are based on flexibility and using an iterative approach that refines the early 

stages so that it makes the development stages more efficient and reduces the need for 

customer interaction. Often, the development stage is split into teams that work together on 

a specific aspect of the project. The main components of Agile methods are a continuous 

design, flexible scope and freezing specifications (Serrador & Pinto, 2015). An advantage of 

agile methods over the traditional methods is that having smaller teams will have more focus 

on the specific aspects of the project, but this leads to issues with the management where 

these separate teams are required to coordinate (Petersen & Wohlin, 2009). 

4.2.1 Kanban Method 

One of the agile methodologies is the Kanban Method. It has a large focus on what tasks need 

to be done and when will they need to be done. As stated by (Lei, et al., 2017), Kanban does 

this by “prioritizing tasks, and defining workflow as well as lead-time to delivery”. This means 

that tasks are sorted on the importance and therefore emphasises these tasks to make sure 
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they are completed in time. Kanban is generally visualized using cards arranged in categories 

such as backlog, work in progress (WIP) and completed. The main idea is to reduce the 

number of cards in the WIP category and so only the required features are implemented, and 

the specifications are tailored to what can be completed in the allotted time. 

4.2.2 Scrum Method 

Another agile methodology is the Scrum Methodology. This method consists of iterations 

called sprints that last for a month. Similar to that of Kanban, work that needs to be done is 

put in the backlog and then prioritizes the tasks at the start of the sprint period. Once the 

tasks have been prioritized, they are moved to the sprint backlog. Daily meetings are held 

throughout the sprint to modify the scope of these tasks and sort out any issues that have 

occurred. Once the sprint period has ended, the work produced during that sprint is 

demonstrated and reviewed to determine whether that sprint work is added to the larger 

project for the release to the customer (Metherall, et al., 2007). In a scenario in which Scrum 

was used, it was easier to find and deal with errors earlier on in the pipeline as a result of the 

daily meetings that the Scrum teams had (Rubin, 2013). With the Scrum method focusing 

heavily on shorter iterations, the objectives to achieve the final product may become unclear 

(Thesing, et al., 2021). This can lead to a different product from what was initially conceived 

by the customer. 

 

 

 

4.2.3 Extreme Programming Method 

An alternative Agile method is Extreme Programming (XP). It is described by (Erickson, et al., 

2005) as “the coding of what the customer specifies, and the testing of that code to ensure 

that the prior steps in the development process have accomplished what the developers 

intended”. This means that XP is based heavily on time management and thus reduces the 

chance of additional features being added so that the customers receive the product on time. 

However, features can be added in the latter stages of development if specified by the 

customer once the base features have been implemented. This is in contrast to most other 

methodologies since the norm is to specify all features before development has started and 
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thus these features are dynamic using XP. A reason to use XP over other agile methods is that 

XP has a large emphasis on reducing the workload by only implementing the features 

necessary for the customer. As mentioned before, this helps to produce the product in time 

for the deadline (Erickson, et al., 2005). Karlsson, et al. (2000) implemented XP and found that 

even though they benefitted from the use of XP, the implementation of it “proved quite 

challenging”.  

4.3 Chosen Methodology 

Kanban is the most appropriate methodology for this project because it allows the project to 

be split up into smaller tasks and a Kanban board is a good visual aid to help organise these 

tasks. Since the project is made under a short time constraint, the tasks can be prioritised to 

ensure the tasks are made based on what can be completed in the allotted time. The waterfall 

process is not used in this project because this method is not iterative such as the agile 

methods and this project requires multiple iterations because multiple models will need to 

be trained and tested to create the best model for object detection. The reason why the 

Scrum method is not used is that it is heavily based on working in sprint groups and a lot of 

the features will be harder to translate for a solo project. XP was not chosen simply because 

this project will not require additional features beyond the initial project scope and therefore 

continuous testing and implementation will not be necessary.  

 

5.0 Project Plan  

The plan for the project can be found in the Gantt Chart (see appendix 1). The research of the 

neural networks is planned to take ten weeks because the history of object detection and the 

analysis of the most suitable methods of object detection will need to be looked at. The 

analysis is planned to take five out of the ten weeks because the methods will need to be 

described in detail and compared with each other to find the most suitable method of object 

detection. The design is expected to take five weeks because every aspect of the artefact will 

need to be decided upon and will have a crossover with the implementation because the 

iterative design process will be used in conjunction with the Kanban method so the artefact 

will be designed, implemented, tested and then re-designed. The implementation is planned 
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to take ten weeks because that allows the maximum amount of time to work on the artefact 

whilst allowing enough time for the artefact to be tested and evaluated.  

6.0 Design 

6.1 Scope 

The artefact for this project will be the object detector that will be used to detect objects from 

a helicopter camera. This can be broken down into these parts:   

- Parsing of images. 

- Creation of the convolutional neural network. 

- Training of the convolutional neural network. 

- Testing of the model in an engine environment.  

The parsing of images is straightforward and can be done using a library so that the image 

data can be fed into the neural network as input data. The creation and training of the CNN 

can either be done by creating the library and the model from scratch or by using a pre-made 

model and training it using custom data. Using a pre-made model will be possible to train and 

test to get results within the time given but will not be an adequate amount of work to discuss 

the implementation and evaluate it as an artefact.  

Therefore, for this project, the artefact will be a CNN library created from scratch to create a 

model that will be able to detect objects. This will prove to be a challenge to do in the given 

time frame. Consequently, the model will not be at a finished stage and therefore it will not 

be in a state for it to be tested in an engine environment. The artefact will need to be tested 

using other means and that will be another aspect of the artefact that will have to be 

designed. To decide how to go about the CNN library, the different models that are currently 

used for object detection will need to be analysed to find the best approach for the artefact.  
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6.2 Hardware and Software Needed: 

 

- Computer/Laptop with a Graphics Processing Unit (GPU) – This is so that the training 

of the model can be done using a GPU which will be a lot faster than using a Central 

Processing Unit (CPU). 

- C++ using OpenNN library – C++ is faster than alternative programming and allows for 

memory management. OpenNN is an open-source neural network library that will be 

used to parse the images as input data. OpenNN will not be used to create the model 

(Artelnics, 2021). 

6.3 Artefact Design 

 

6.3.1 Iterative Design Process 

The iterative design process will be used alongside the Kanban methodology to design and 

implement the artefact. The iterative design process is a cyclic process that will cycle after a 

series of fixed-length smaller projects. During a cycle, the small project is designed, 

implemented, tested and evaluated and then added to the main project. The idea is that over 

the many cycles, the main project gets bigger and more adapted. The design is also adapted 

after these cycles as the project grows and evolves (Larman, 2005).  

One of the reasons why it will be used for this project is that the scope of the project is too 

large for the given time frame. Therefore, testing the project in the originally planned way 

will not be possible if there is not a complete artefact. So, if the project cannot be tested as a 

whole, each subsection needs to be tested to prove that the artefact works well with what 

has been made so far. The testing part of the iterative design process can be used to test each 

part of the project without needing the project to be finished before testing.  

Another reason for using the iterative design process with this project is that it will help 

choose which parts of the project to work on next. With the scope being too big for the 

current time frame, the whole project will not be finished in time and as a result, the tasks to 

get there will have to be prioritized based upon which can produce an unfinished working 
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artefact. The iterative design process helps to show early visible progress so that the tasks to 

do first will be prioritized by which ones show the most progress and therefore an artefact 

can be shown regardless of if it is not finished in time (Larman, 2005). 

This project will be using the iterative design process but without the concept of cycles. This 

is because the time frame is too short to break down into smaller cycles and therefore will be 

used alongside Kanban. Instead of using cycles, the project will be broken down into smaller 

tasks on the Kanban board and each task will have to be designed, implemented and tested 

before considering that task done and moving on to the next task. 

 

6.3.2 Neural Network Library Design 

As previously mentioned, the ideal object detector to make is the YOLO model. This uses the 

Darknet neural network library which has been used as the inspiration for this artefact 

(Bochkovskiy, et al., 2020).  

The initial design of the neural network class is shown in the UML class diagram in figure 12 

below (Appendix 3).  
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Figure 12: UML Class Diagram 

The overall structure is a neural network class that holds an array of layers that each hold an 

array of nodes. The maths logic is handled by the nodes and the tying together of the nodes 

is handled by the layers and the passing of inputs/outputs between layers is handled by the 

neural network class. This is done to allow a more dynamic creation and modification of layers 

and the network to be able to combine a multitude of different layer combinations. For 

example, figure 13 below shows the network architecture of YOLOv2 which consists of 

multiple different layers with a variety of filter and output sizes.  
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Figure 13: YOLOv2 Network Architecture 

The flow of the inputs and outputs is best shown in the sequence diagram as figure 14 below 

(Appendix 4). The inputs get passed into the network which then passes it to the first layer. 

The layer class will then set all the inputs of the nodes. Once the CalculateOutputs() function 

is called for the network, it is called on each layer starting with the first one. This layer will 

then calculate the outputs for each node, called the activation function and pass the outputs 

back to the network class. These outputs are set as the inputs of the next layer and so on until 

CaluclateOutputs() has been called on each layer. Finally, the cost is calculated and then the 

BackPropagation() function is called for each layer starting with the last layer to update the 

weights and biases. 
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Figure 14: UML Sequence Diagram 

The architecture has also been designed so that these different layers can be created 

separately and added to the network for the network to handle the passing off the output of 

one layer as the input of the next layer. On top of this, the layers all have different output 

sizes which is another reason why they are in vector arrays because the layer output sizes 

may not be pre-defined by the user and therefore will have to be dynamically 

increased/decreased based on the number of inputs, weights and biases.  

Furthermore, the network is designed to store the layers as pointers in a vector array. Pointers 

are used here so that the classes that inherit from the layer class can be recognised as layers 

to be placed into the vector array. The main reason there is a base layer class and then the 

different layer types inherit from this class is because they all have the same functions, but 

they all work in different ways. For example, the method for calculating the output of a 

convolutional layer will be different to that of a pooling layer but they both need a calculate 

outputs function.  

Darknet uses standard arrays for the storage of the inputs, weights and biases. This uses 

memcpy to modify the size of the arrays dynamically, but this artefact will not use standard 

arrays. Alternatively, the neural network class will consist of vector arrays instead of standard 



34 
 

arrays. A vector array has been chosen because it allows the use of dynamic memory resizing 

which means the network can be initialized and then the layers can be pushed into the 

network.  

The handling of the activation functions is done using a utility class that defines a set of static 

inline functions. This is done in a similar way to Darknet because all the activation function 

needs to do is take in a float and return an output float. Using static functions in a helper class 

means that an instance of the activation functions does not need to be made since only one 

function will be needed at a time. The appropriate function will then be called by the layer 

classes. 

6.3.3 Unit Testing 

As explained in the scope, it is clear that the artefact is not possible to produce and test in the 

allotted time frame. Therefore, unit testing will be used to test the artefact. This is because 

unit testing will be able to test the artefact without it being fully finished and can test the 

different aspects of the neural network library to make sure that what has been produced will 

work.  

A major advantage of unit testing is that it helps to identify bugs and errors in code so that 

they can be fixed (Minhas, 2021). It does this by breaking down the source code by testing 

specific functions/methods to determine whether they meet the expected behaviour. A well-

designed unit testing system will test successful outcomes, edge cases and failure cases. This 

is to make sure all outcomes are covered and there are no undefined behaviours. This is useful 

for a neural network library because it will contain a lot of maths that will need to be tested 

with edge cases and with inputs that produce the expected output. For example, the 

activation functions can be tested to confirm the equations are correct.  

Another advantage of the use of unit testing for debugging is that it can be used as part of the 

iterative design process to test that the developed feature works fully before moving on to 

the next feature. As a result, a robust artefact will be created with full confidence that there 

are little to no errors. This is a good method for developing a neural network library because 

features can only be added to the library once the current features are fully tested. In doing 

so it avoids developing a library that is too buggy and can only be used in a few situations.  
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The last major advantage of unit testing is that it helps to produce code with clear inputs and 

outputs. As a result of this, it makes the code more modular so that it can be built upon or 

integrated into other projects. One of the most important aspects of a library is that it needs 

to be modular so that it can be used for a variety of different projects/situations. The idea of 

creating a neural network library is for the user to be able to create different types of neural 

networks and not just one type of model. Unit tests allow the library to be tested for different 

use cases and means that it can be built upon to produce more advanced neural network 

models that will eventually help with the end goal of the project.  

These are the reasons for using unit testing for the neural network library and due to the 

iterative design process and unit testing, the implementation of the artefact will likely turn 

out differently from the initial design. 
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7.0 Implementation  

As stated in the design, the inspiration for the artefact of the neural network library comes 

from Darknet (Bochkovskiy, et al., 2020). Darknet is a neural network library specifically 

designed for object detection and was made for the creation of YOLO models. As found in the 

research, a YOLO type model would be best for the object detection of objects in real-time 

and therefore this is the reason for using Darknet as an example of the end goal of the 

artefact. However, the depth and complexity of Darknet are too high for the given time frame 

so only certain aspects have been influenced by Darknet’s design. One of these aspects is how 

the activation functions are used.  

 7.1 Activation Functions  

Activation functions are implemented at the end of a layer after the inputs have been 

processed using the weights/biases. The role of the activation function is to determine how 

much of a signal to pass to the next layer based on the outputs of the layer. The functions are 

typically non-linear and take in an input and produce an output after passing it through the 

activation function (Weidman, 2019). 

The activation functions are all static inline functions. Using static inline before the functions 

tells the compiler that these functions should only be accessed within the activation function 

header and cpp files. There is also an activate function which takes an ACTIVATION enum and 

an input. This function is simply a switch state based upon the enum passed in that calls the 

corresponding activation function and returns the result. This is so that this function can be 

called by the layers and this function can then call the static inline functions. On top of this, 

there is an activate array function that takes in a vector array of inputs and returns a vector 

array of outputs after applying the softmax function. 

The implementation of the activation functions only differs from the initial design in one 

aspect. As stated previously in the design, the layer classes will handle which activation 

function to call but this has been changed in the implementation to be handled by the activate 

function. This is because it is unnecessary duplication of code to have the switch statement 

in all the different layer classes.  

There are seven different activation functions in the artefact. These were chosen based 

because they were used in Darknet and therefore are used in object detection. However, 
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Darknet has more than seven activation functions implemented. Due to the time constraint, 

it would not be feasible to implement all the activation functions.  Consequently. the seven 

functions were chosen based on which are the most used activations in neural networks.  

The process of implementing the activation functions consisted of looking up the 

mathematical equations and converting them to code.  Since these equations are not too 

complicated, they were implemented easily. They were created as a class object so the 

activation type was passed into the constructor but that was changed to be a single activate 

function as mentioned earlier.  

7.2 Layer Class 

The layer class is implemented as a base class for all the different types of layers. This class 

consists of the variables and functions needed in most of the layers. The variables are the 

inputs, outputs, weights, and biases which are all vector arrays of float for the reason 

discussed earlier in the design. There are also variables for the number of nodes, activation 

type, layer type and sets of inputs.  

This class also contains several virtual functions. The use of virtual functions allows them to 

be overridden by the inherited classes. On top of this, the inherited class can have these 

overridden functions with the same name but with different methods specific to the type of 

layer. For example, the calculate output’s function can be overridden by the connected and 

convolutional layers but the way these functions will have different methods of calculating 

the outputs.  

In addition to this, using layers classes that inherit from the base class means that the different 

layers can be stored in the network class as an array of layer objects. The use of overridden 

functions means that these functions can be called by the network class when iterating 

through this array of layers. The layer type variable is used to differentiate the different layer 

types for use when iterating through the array of layers. There are three different layer types. 

As shown in the UML diagram for the initial design, the layer classes were planned to store a 

set of nodes which would handle the calculation of each node. This was changed when 

implementing the base layer class and the inherited classes so that the calculating of all the 

outputs are handled in the layer classes. The reason for this change is that the addition of a 
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node class was found to be an unnecessary abstraction and was more difficult to debug when 

the unit testing failed on the calculation of the outputs.  

The filter class was implemented in a similar way to that in the initial design. This is because 

the weights are stored in the filters and therefore these filters can be applied to the inputs to 

produce the outputs. However, the implementation of the filter class differs from the design 

by only using the filters are a means of storing the weights instead of calculating the outputs 

using the filter class. The reason this was changed in the implementation is similar to the 

removal of the node class in that it was simpler to debug the process of calculating the outputs 

when it was all calculated in the layer classes. 

There are additional functions added to the layer class which differ from the initial design. 

These include three functions to get the bias costs, weight costs and input costs which were 

added to retrieve the corresponding variables so that they can be used by the network class 

to pass the next layer and update the biases and weights once backpropagation has been 

completed on the whole network. Another additional function is the update weights and 

biases function. In the design, this function was planned to be done in the back propagation 

function, but this was implemented into a separate function because if there are multiple 

batches of inputs then backpropagation will need to occur for each input in the batch before 

the weights and biases are updated. More on how the backpropagation was implemented 

later in the section titled backpropagation.  

7.2.1 Fully Connected Layer Class 

The connected layer is a layer that consists of output nodes with the equation:  

𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑖𝑛𝑝𝑢𝑡𝑠 ∗  𝑤𝑒𝑖𝑔ℎ𝑡𝑠 +  𝑏𝑖𝑎𝑠.  

This is the most used layer in neural networks and is the final layer in a YOLO based object 

detector. This is because it is typically used for the classification of objects in an image. A 

visualization of a fully connected layer is shown below in figure 15 (Ramsundar & Zadeh, 

2018). 
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Figure 15: Visualization of a Connected Layer 

The constructor for the connected layer class requires the inputs, weights, biases, number of 

output nodes and activation type to be passed in. The corresponding class variables are set 

to these values passed in.  

The calculate outputs function is an overridden class which iterates for each output node to 

calculate the output for that node. Firstly, the inputs are iterated through to multiply the input 

with its corresponding weight. Once this has been done, the bias for that node is added and 

finally the activate function is called to get the final output for that node. These output values 

are pushed into the vector array of outputs. 
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There is a set inputs function which takes in a vector array of floats and sets the inputs for 

that layer. This has been implemented for neural networks that have multiple layers so that 

when the outputs are calculated for the previous layer then they can be set as the inputs of 

the next layer. The set inputs function allows the handling of outputs/inputs to be controlled 

by the network class.  

The implementation differs from the initial design because there was an additional function 

implemented called calculate input costs. This function calculates the input costs for the layer 

so that they can be passed into the next layer for backpropagation. This function is only called 

at the end of the back propagation function so it can be included in that function as planned 

in the design, but it has been separated to differentiate the calculation of the weight costs 

and the input costs.  

The process of implementing these functions for the connected layer class was not too 

difficult and the logic behind calculating the outputs is not difficult to implement in code. An 

aspect of the implementation of the fully connected layer that is done well is that there are 

no constraints on the number of nodes/weights/inputs that can be in the layer. This means 

that a variety of different configurations of the layer can be used so that the library can be 

used to create networks for a multitude of different purposes.  

However, there was an issue when calculating the outputs which were indexing through the 

weights so that the correct input was multiplied by the correct weight. That’s why the number 

of weights per node variable is calculated to find the correct index using the equation: 

𝐼𝑛𝑑𝑒𝑥 =  𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑛𝑑𝑒𝑥 +  (𝑛𝑜𝑑𝑒 𝑖𝑛𝑑𝑒𝑥 ∗  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑝𝑒𝑟 𝑛𝑜𝑑𝑒). 

 

7.2.2 Convolutional Layer Class 

The second type of layer is called the convolutional layer. This layer uses filters to find specific 

shapes and lines within an image that is passed through. Filters are 3x3 or 5x5 matrices that 

act as the weights for the layer. All the values in the filter are multiplied by the corresponding 

values in the image and added together to get an output. This filter will then move along by 

a stride length across the whole image to get an output image (Brownlee, 2019).  
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For images with colour, the input image will have three channels (RGB) and therefore the 

filters will also have three channels. When calculating the output for multiple channels, the 

process is the same and applied to each channel except the outputs for each channel are 

added together to get an output image with one channel. An example of this is shown in figure 

16 below (Saha, 2018). 

 

Figure 16: Visualization of a 3D convolutional layer 

Another aspect of convolutional layers that is also present in figure 16 is the row and column 

of the value 0. This is referred to as padding and is often used to modify the size of the output 

image. For example, if the input is 5x5 and the filter is 3x3 with a stride of 1 this results in an 

output image of 3x3. If padding is added to the input image, then the output image size can 

be increased. There are two types of padding: valid padding and same padding. Valid padding 

is when a single row and column of 0s is added to the start of the image to get an output 

image with a size smaller than the inputs image. Same padding adds 0s all around the edges 

of the image to get an output image of the same size as the input. If valid padding was applied 

to the above example, then the output image will be of size 4x4 but if same padding was 

applied then the size will be 5x5 (Saha, 2018). 

The convolutional layer class is another inherited class from the layer class. This class 

overrides the calculate outputs, set inputs and get outputs functions from the base class. 

There is an additional function called get filters which returns the filters for the layer. 
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Alongside the inherited variables the following class integer variables have been added: input 

height, input width, number of channels, number of filters, stride height and width. Also, two 

3D vectors array has been implemented for the input and output image. These have been 

implemented in a three-dimensional (3D) vector array of floats because as shown previously, 

the theory has the filter moving across a multidimensional image. Therefore, converting a 

one-dimensional (1D) array of inputs into a 3D array helps to visualize the calculation of the 

outputs. 

A filter struct was implemented to store all the variables needed for each filter. The variables 

are the height, width, number of channels and a 3D vector array of floats to store the values 

of the filter. This has been implemented in a struct because a convolutional layer will likely 

have multiple filters of different sizes and values. The filter struct has a constructor that takes 

in the height, width, channels and values as a vector array of floats. The values for the filters 

are then looped through to push these values into the 3D vector array. A 3D vector array is 

used because the input images are likely to be an image with multiple channels so converting 

the filters into 3D vector arrays makes the calculation of the outputs easier the visualize from 

the code if the inputs and filters are in the same dimensions.  

The constructor for the convolutional layer takes in the input height, width, channels, a vector 

array of filters, stride height, width, a boolean for whether to add padding or not and the 

activation type. The corresponding class variables are set in the constructor and the filters are 

pushed into the array of filters. The reason these are pushed individually instead of setting 

the array is so that each filter can be checked using an assertion to make sure the number of 

channels in each filter is the same as the input. Even though the filter can be of different sizes, 

they all must have the same number of channels as the input image. As well as this, the values 

are pushed onto the weights array so that the number of weights can be retrieved by the 

network class. 

The set inputs function takes in a 1D array of floats and converts this into a 3D array of floats 

referred to as the input image. Before the conversion, there is an assertion to check the input 

height, width and channels are consistent with the size of the array passed in. For the parsing 

of the inputs, two local variables called input channel and input row are created. The input 

row is a 1D vector array and the input channel is a two-dimensional 2D vector array. A triple 

nested for loop is implemented to iterate through the channels, heights and widths to firstly 
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push each input value into the input row. Then each input row is pushed into the input 

channel and finally, each input channel is pushed into the final input image.  

Padding is also added to the input image in the set inputs function. If the has padding Boolean 

variable is set to true, then true padding is applied so that rows and columns of 0s are added 

to the edges of the image. This is done by adding a padding row before and after every input 

channel and adding a 0 before and after every row when parsing the input image. Finally, 2 is 

added to the input width and height to reflect the addition of padding. 

The calculate outputs functions iterates through each filter and applies that filter to the input 

image to create what is referred to as an activation map which is part of the final output 

image. The output image is a 3-dimensional vector where each channel is a different 

activation map or output after applying a filter. If there are 6 filters in the layer, then the 

output image will have 6 channels.  

Firstly, two variables are created called the max height and width which are calculated by 

using the input heigh and width minus the height and width of the filter minus one. This is 

done to find the end point of the input image, so the filter does not iterate too far along the 

image. This is because the filters are iterated using the top left of the filter. Then a double 

nested for loop has been implemented to iterate through the input image from 0 to the max 

height and width using the stride height and width to increase the top left x and y positions. 

For each position a local variable for the output float is set to 0.0f then a filter is applied by 

iterating through the height and width of the filter to get the filter value and the 

corresponding input image value and multiplying them together. The output value for that 

iteration is the total of the multiplication between the inputs and filter values for the size of 

the filter. The sum of the outputs is for all channels that the filter iterates over so the final 

output image will have one channel for each filter used in the layer. This output image is 

sometimes referred to as the activation map so if there are six filters then the activation map 

will have six channels regardless of the number of channels the input image has. Finally, these 

outputs are passed into the activation function and then pushed onto the output image and 

the outputs vector array.  

The reason for having a 3D output image and a 1D outputs array is so that when debugging 

the outputs, they can be clearly visualized in a 3D array. This is because it is easier to see how 
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each output value relates to the input image. The 1D outputs array is used to pass into the 

set inputs function of the next layer in the network. This is to have a consistent set inputs 

function that takes in a 1D array for each layer.  

The convolutional layer class only differs from the initial design with the additions of extra 3D 

vector array variables for the input and output and the variables for the input loss and weight 

loss. Just like the connected layer, the get functions for the input costs and weight costs were 

added for the network class to retrieve these variables so that they can be passed into the 

previous layer during backpropagation.  

The implementation of the convolutional layer was more complex to implement than the 

connected layer because of the increased number of dimensions to calculate. The first 

challenge was the parsing of the weights into a 3D array. Originally, the weights were 

implemented in a 4D array but that was too convoluted to iterate through and didn’t account 

for different sizes of filters. This was changed to a filter class that stored the height, width, 

channels, and weights for each filter as mentioned above. Once the change was made, the 

calculation of the outputs was easier to calculate because each filter can now be iterated 

through and applied to the inputs.  

Another challenge was adding the padding to the input image. When padding is added to the 

input image, the width and height of the input image increase. Therefore, this needs to be 

accounted for when iterating through the new input image and was an issue when the unit 

tests for the convolutional layer failed. The cause of this was found to be when the inputs 

were passed through the constructor and then the set inputs function, the size of the input 

image would be padded twice. Therefore the passing of the inputs was removed from the 

constructor and so the set inputs function has to be called for the inputs to be passed in.  

Overall, the implementation of the convolutional layer is done in a naïve way. It works for all 

configurations, but the calculation of the outputs uses 3D arrays which means that the 

calculation takes longer to complete. It would have been quicker to calculate the outputs 

using a 1D array to iterate through. More details on the speeds of the calculations will be in 

the testing and result sections. 
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7.2.3 Pooling Layer 

The third and final layer type is the pooling layer. It is used to reduce the size of the input 

images to speed up the calculation of the outputs for a CNN. This layer works in a similar way 

to the convolutional layer in that it uses filters that iterate over the input image to produce 

output images. In contrast to the convolutional layer, the pooling layer does not have any 

weights in the filters and instead will either use max pooling or average pooling (Krizhevsky, 

et al., 2017). 

Max pooling will calculate the output for each filter iteration by taking the maximum value as 

the output for all the values that are covered by the filter. In contrast, average pooling 

calculates the average of the values that are covered by the filter. These filters are two 

dimensional and therefore are applied to each channel separately and do not aggregate all 

the channels into one like the convolutional filters do. For example, if the input image is of 

size 28x28x6 and the filter size is 3x3, then the output will be of size 8x8x6 which is a 

significant decrease in size (Sewak, et al., 2018).  

For the implementation, the pooling layer class constructor takes in the input height and 

width, inputs array, filter height and width, stride height and width and a bool to determine 

whether the pooling layer is using max or average pooling. There is a class variable for all 

these variables and they get set in the constructor. Similarly to the convolutional layer, the 

pooling layer also converts the 1D array of inputs into a 3D array but this is done in the 

constructor as well as the set inputs function.  

The calculate outputs function starts by calculating the max height and width for the 

iterations of the filter. These are simply the input height or width minus the filter height or 

width. Then the input image is iterated through to get the top-left position for the filter. For 

each iteration, either the max pool or average pool function is called based upon the bool 

passed into the constructor. 

The average pool and max pool functions both take in three integers that are the top left 

corner position of the filter for this iteration. In these functions, an output float is initialized. 

For the max pool function, this output float is initialized to negative infinity and for the 

average pool function, it is initialized to 0.  
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Then, the max pool function will iterate through the height and width of the filter to add that 

to the top left position passed in to get the input image value at each position. If that value is 

higher than the current output value then the output value is set to that. After the filter has 

been iterated through, the output value is returned. In contrast, the average pool function 

will sum up all the values when iterating through the filter and then divide that sum with the 

filter height multiplied by the filter width to get the mean average for that filter iteration. This 

mean average is then returned. Once these functions have been called, the returned value is 

pushed onto the outputs array and the 3D output image. 

The implementation of the pooling class was changed from the initial design in that the two 

additional functions for the max and average pooling. In the design, this was planned to all be 

in the calculate outputs function but this was changed to make the debugging of the outputs 

easier. By implementing the pooling calculations into functions, the top-left position for each 

iteration can be checked alongside the output for that iteration.  

The implementation of the pooling layer is similar to that of the convolutional layer in that it 

was a naïve approach that can be optimized by iterating through the inputs as a one-

dimensional array rather than the 3D input image array. However, because it uses the input 

and output images, it can be unit testing in the same way that the convolutional layer is. As a 

result, it made it easier to figure out the necessary unit tests to fully test the pooling layer 

after the convolutional layer was fully tested. 

7.3 Backpropagation 

The one thing that hasn’t been discussed with the layers is backpropagation. The purpose of 

backpropagation is to adjust the weights and biases of the layers to get the expected outputs 

for the given inputs. The method that is typically used to calculate the amount to adjust the 

weights is called stochastic gradient descent (SGD). The objective of SGD is to minimize the 

loss between the expected output and the output calculated after the inputs have been fed 

through the network (Bottou, 2012).  

The loss is minimized by increasing or decreasing the weights and biases by a small amount 

to find the optimal values for these weights and biases. One of the common methods of 

calculating the loss is using the mean-squared error (MSE). MSE is calculated using the 

following equation: 𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
∑ (𝑦 − 𝑔(𝑥))2𝑛

𝑖=1 . Where n is the number of sets of inputs per 
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batch, y is the expected outputs and g(x) is the calculated outputs. A batch is a randomized 

set of inputs with their respective expected outputs (Ketkar, 2017). 

The loss can be minimized by decreasing or increasing the weights and biases by a value. This 

value can be calculated by finding the derivative of the cost over the weight: 
𝑑𝐶𝑜𝑠𝑡

𝑑𝑊𝑒𝑖𝑔ℎ𝑡
. The 

chain rule states that this calculation can be broken down into this equation: 
𝑑𝐶𝑜𝑠𝑡

𝑑𝑊𝑒𝑖𝑔ℎ𝑡
=

𝑑𝐶𝑜𝑠𝑡

𝑑𝑍0
∗

𝑑𝑍0

𝑑𝑊𝑒𝑖𝑔ℎ𝑡0
. During the process of backpropagation, the layers are evaluated in the 

opposite order in which the outputs are calculated. So when referring to the previous layer, 

that is the previous layer going back to front in the network. The methods of calculating these 

values differ slightly depending on the layer type. 

7.3.1 Backpropagation for the Connected Layer 

The first part of this equation is the 
𝑑𝐶𝑜𝑠𝑡

𝑑𝑍0
 which is the derivative of the cost over the output 

calculated by a single neuron and can be calculated using the equation: 
𝑑𝐶𝑜𝑠𝑡

𝑑𝑍0
=

𝑑𝐶𝑜𝑠𝑡

𝑑𝑂0
∗

𝑑𝑂0

𝑑𝑍0
. 

Backpropagation starts with the final layer in the network and works backwards so this 

equation represents the difference between the output and expected output multiplied by 

the output multiplied by one minus the output. This also calculates the cost for the bias 

associated with that neuron which can be written as 
𝑑𝐶𝑜𝑠𝑡

𝑑𝐵𝑖𝑎𝑠
 (Wolfe, 2017).  

However, this only works for the final layer in the network and so the equation for 
𝑑𝐶𝑜𝑠𝑡

𝑑𝑂0
 differs 

from the previous layers in the network. The new equation is calculated using the sum of the 

previous layer’s bias costs multiplied by the weights that are relevant to this neuron. This is 

referred to as the input costs for the previous layer and will need to be passed into the 

previous layers to get the bias and weight costs (Wolfe, 2017). 

The second part of the main equation is 
𝑑𝑍0

𝑑𝑊𝑒𝑖𝑔ℎ𝑡0
 which is the derivative of the output over 

the weight. This is simply just the input that the weight is multiplied by. Therefore, to get the 

cost of the weight, the cost of the bias needs to be multiplied by the input for that weight. In 

summary, for backpropagation in the network the following values need to be calculated: cost 

of the bias, cost of the weight and the cost of the inputs for that layer (Wolfe, 2017). 
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The implementation of backpropagation for the connected layer is calculated in a two-step 

process. Firstly, the weight, bias and input costs are calculated and then these values are 

applied to the weights and biases. This process is done in three functions: backpropagate, 

calculate input costs and update weights and biases.  

There are two variations of the backpropagate function: one which takes in a vector array of 

floats that represent the expected outputs and one which takes a vector array of floats are 

the previous layers inputs costs. The first variation is used when the connected layer is the 

last layer in the network and so the second variation is used when there are layers that are 

not the final one in the network.  

Both functions start by calculating the number of weights and the number of weights per 

node. Then each node is iterated through, and the bias cost is calculated. The calculation of 

the bias cost differs slightly between the variations. For the last layer, the output for the node 

is subtracted by the expected output for that node and that is multiplied by the 𝑜𝑢𝑡𝑝𝑢𝑡 ∗

(1 − 𝑜𝑢𝑡𝑝𝑢𝑡) to get the bias cost. When the layer is not the last one, the output subtracted 

by the expected output is replaced with the previous layer costs that are passed in. This bias 

cost is then pushed into a vector array.  

The weight costs are then calculated by iterating through all the weights for that node and 

multiplying each input by the bias cost to get the weight cost for each weight. These are 

pushed back into a vector array of weights costs. Finally, the input costs are calculated in a 

separate function. Each input is iterated through and the cost of this input is calculated by 

iterating through the number of weights and multiplying the weight by the bias cost. These 

values are summed together for each weight that connects to the input to get the final cost 

for that input. Just like the weights and biases costs, these values are pushed into a vector 

array of input costs.  

The update weights and biases function takes in two vector arrays of floats that are the 

weights costs and biases costs for this layer. Then each weight and bias are iterated separately 

to subtract the current weight or bias value by the passed in costs multiplied by the learning 

rate which is also passed in: 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑤𝑒𝑖𝑔ℎ𝑡 − (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑠𝑡). 

The backpropagation was initially planned in the design to have all calculations in one function 

but this was separated into two main functions in which one function calculates the costs and 
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the other updates the weights and biases. This change was made after testing the 

backpropagation with multiple inputs. When testing with multiple sets of inputs the costs will 

need to be averaged to get an average cost for all the sets of inputs. This was found to be an 

issue with one function because the costs for each set of inputs need to be aggregated and 

then applied once the average was found. Separating the calculation of costs and updating 

the weights and biases, allows the average costs to be calculated outside of the class and then 

passed into the update function once the average has been calculated. 

The implementation of the backpropagation for the connected layer was the most difficult 

part of the artefact to implement. This was because of the amount of maths equations to 

understand and convert into code. It was hard to figure out what the derivations were and 

how to calculate each one using the variables already implemented for the calculation of the 

outputs. For example, it took a while to figure out that equations such as 
𝑑𝐶𝑜𝑠𝑡

𝑑𝑍0
∗

𝑑𝑍0

𝑑𝑊𝑒𝑖𝑔ℎ𝑡0
 just 

meant the 𝑏𝑖𝑎𝑠 𝑐𝑜𝑠𝑡 ∗ 𝑖𝑛𝑝𝑢𝑡. Once these conversions from maths to variables were made, 

backpropagation for the connected layer was easy to implement.  

Overall, the implementation for backpropagation in the connected layer was completed and 

fully tested in time and works as expected regardless of the initial difficulty in understanding 

the maths behind it. However, some optimizations can be made to improve the 

implementation of backpropagation. These include methods of adapting the learning rate to 

avoid hitting incorrect optimal weight and bias values and speed up the rate at which the 

correct weight and bias values are reached. 

7.3.2 Backpropagation for the Convolutional Layer 

Backpropagation differs slightly for the convolutional layer in the way that the costs for the 

bias, weights and inputs are calculated. Since the weights are in filters which are applied to 

the inputs and there are no biases in the convolutional layer, the cost of the bias does not 

need to be calculated. The loss for each filter can be calculated using the equation: 
𝑑𝐶𝑜𝑠𝑡

𝑑𝐹𝑖𝑙𝑡𝑒𝑟
=

𝑑𝐶𝑜𝑠𝑡

𝑑𝑂0
∗

𝑑𝑂0

𝑑𝐹𝑖𝑙𝑡𝑒𝑟
 where, as previously mentioned, 

𝑑𝐶𝑜𝑠𝑡

𝑑𝑂0
 is the cost of the inputs from the previous 

layer and 
𝑑𝑂0

𝑑𝐹𝑖𝑙𝑡𝑒𝑟
 is the filter. Because the cost of the inputs and the filters are in three 

dimensions, the loss from each filter can be calculated using a convolution between the cost 

of the inputs and the filter. This is illustrated in figure 17 below (Solai, 2018).  
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Figure 17: Illustration of the calculation of the loss for a filter 

The loss for the inputs is calculated using the following equation: ∑
𝑑𝐶𝑜𝑠𝑡

𝑑𝑂0
∗

𝑑𝑂0

𝑑𝑍0

𝑛
𝑘=1 . As 

previously mentioned, 
𝑑𝐶𝑂𝑠𝑡

𝑑𝑂0
 is the loss from the previous layer but since there is no bias for 

this layer, 
𝑑𝑂0

𝑑𝑍0
 is the filter rotated 180 degrees. Therefore, to get the loss for the inputs, the 

rotated filters need to be multiplied by the loss from the previous layer which is a convolution 

between the two. This process is shown in figure 18 below (Solai, 2018). 
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Figure 18: Process of calculating the loss for the inputs of a convolutional layer 

Just like the connected layer, the implementation of backpropagation for the convolutional 

layer occurs in two functions: backpropagate and update weights and biases. However, it 

differs by only having one variation of the backpropagation layer with takes in a vector array 

of floats for the loss of the previous layer. This is because the convolutional layer is not 

typically the final layer. After all, the outputs are in three dimensions and would be fed into a 

connected layer to produce outputs in a format which can be interpreted.  

Firstly, the loss of the previous layer that is passed in is converted to a 3D vector array called 

a loss image. Then the number of filters is iterated through because each channel of the loss 

image is the output of a filter convolution. The max height and widths are calculated so that 

the input image can be iterated through. The loss for the weights is calculated by iterating 

through the input height and width similarly to calculating the outputs but instead the output 

is calculated by summing the loss image values multiplied by the input image values for each 

filter iteration to get the loss values for that filter. The loss values for each filter are pushed 

into a 1D vector array and stored in each filter as a 3D array of floats.  

The calculation of the costs for the inputs is calculated by first making a copy of the filter and 

then transposing these filters by rotating them 180 degrees. Then these transposed filters are 
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applied to the loss image from the previous layer. For this calculation, the start x and y 

positions are calculated using one minus the filter height and width. This is because, as shown 

in figure 19, the start positions for the convolution are not at 0,0 like the process of calculating 

the outputs. To account for this, there is a check before calculating the multiplication to check 

that the indexes for the x and y positions are within the bounds of the loss image. If they are 

not, then the output is not calculated. To get the final output for each input, the sum of the 

filter values multiplied by the loss image values is calculated for all the filters to get a sum of 

all filters. These values are all stored in a 1D array of floats called loss input.  

In the update weights and biases function, the filter values are updated by iterating through 

each value in each filter and subtracting the weight costs multiplied by the learning rate which 

are passed into the function. Since this function is overridden from the base layer class, the 

bias costs are passed in but are ignored for the convolutional layer because there are no 

biases to update. 

Just like the connected layer, the only change that was made to the backpropagation was the 

separating of the calculating the costs and updating the weight and biases functions.  

The concept of backpropagation for the convolutional layer was not difficult to understand 

once the realization that the costs were calculated using convolutions between the filters, 

loss of image from the previous layer and the input image. The implementation was 

completely working and tested a lot quicker than originally anticipated. However, during the 

testing of the backpropagation, it was found that padding was not accounted for so some of 

the unit tests failed. This was easily fixed by increasing the max height and width when 

calculating the input costs.  

7.3.3 Backpropagation for the Pooling Layer 

Unlike the convolutional and connected layers, the pooling layer does not have any weights 

or biases so the only derivative to calculate is the loss for the inputs. For the max-pooling 

layer, the maximum input is the output for that filter iteration. Therefore the derivative of 

that output is itself and so this number is the loss for the input at the same position in the 

input image. However, this leaves the other values that were not taken as the output need to 

be derived. These values that were not the max are set to 0 since the max value position takes 
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100% of the output. The process of backpropagation for the pooling layer is shown in figure 

19 below (Kravets, 2021). 

 

Figure 19: Illustration of backpropagation of the pooling layer 

Since only the input costs need to be calculated, the implementation of backpropagation for 

the pooling layer was quick to complete and test. This process is once again done in the 

backpropagate function that takes in the loss from the previous layer. Firstly, the loss input 

image for this layer is initialized to be the same size as the input image. Then the input image 

is iterated through to get the top left values as if calculating the output. A separate function 

called backpropagate max pool is called that takes in the top left values, the channel index 

and the value from the previous layer costs that are in the same position as the output is for 

that filter iteration. This function gets the output for that iteration from the output image and 

then the filter is iterated through and if the input in one of the positions is equal to the max 

number for that filter iteration then the value in that position in the loss input image is set to 

the max, else it is set to 0. Once the costs for the loss input image have been calculated then 

they are all pushed into a 1D array called loss input.  

The implementation of backpropagation for the pooling layer has an additional function 

called backpropagate max pool that was not initially planned in the design. This function was 

created in the eventuality of having a max pool and average pool function. However, the 

average pool function was not implemented in time and therefore the extra function was not 

necessarily needed. But the separation of the max pool backpropagation is helpful for the 

debugging of the backpropagation because it makes it easier to see how each output is 

calculated. So overall, the implementation of backpropagation for the pooling layer works 
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well for max-pooling but it is not completed because the implementation for an average 

pooling layer was not done in time.  

7.4 Network Class 

The purpose of the network class is to handle the passing and calculation of the inputs and 

outputs from layer to layer. It also handles the training of the network by calculating the loss 

and aggregating and passing the relevant costs to each layer in the network.  

The network itself is a vector array of layer pointers where each layer is added to the network 

by calling the add layer function. The inputs for the first layer can be set by calling the set 

inputs function which directly calls the set inputs function for the first layer in the network. 

The output for the network can be calculated by calling the calculate outputs function. This 

function first asserts to check there are layers in the network array then the current outputs 

are initialized as the inputs of the first layer. After this, each layer is iterated through to set 

the inputs as the current outputs, call the layer’s calculate output function and then set the 

current outputs as the output for that layer. Finally, the current outputs of the final layer are 

returned. 

There is a backpropagate function that handles the backpropagation of the whole network 

for a set of inputs. It takes in the expected outputs for the set passes that to the 

backpropagation function for each layer in the network going from back to front. Then the 

weight and bias costs are retrieved from each layer and appended to an array with all the 

weight costs and an array with all the biases costs for the whole network. Finally, the value of 

the costs for this set is added to the running total of the cost values for all the sets in the batch 

which are stored in two vector arrays called biases costs and weights costs.  

A function called train network has been implemented to handle the overall training of a 

network that has multiple sets of inputs and expected outputs in the batch. It takes in two 

vector arrays: one for the inputs for that batch and one for the corresponding expected 

outputs for each input. Firstly, the number of inputs and expected outputs per set are 

calculated. Then an input index and output index are iterated increasing them by the number 

of inputs and outputs per set for each iteration. So for each set, the inputs and expected 

outputs are set from the vector arrays passed in and then the inputs are set, the outputs are 

calculated and the backpropagation function is called. After these functions have been called, 
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the outputs for that set are pushed back into a class vector array of floats for all the outputs 

from all the sets of inputs.  

The outputs are then used with the expected outputs to calculate the loss for the training 

batch using the equation: 
∑(𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑠−𝑜𝑢𝑡𝑝𝑢𝑡𝑠)2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡𝑠
. This is called the mean-squared error 

(MSE) and represents the loss for the network as a whole. MSE was chosen because it is the 

most commonly used error calculation for regression neural networks and cross-entropy is 

used for classification networks (Reed & Marks, 1999). However, cross-entropy was not 

implemented in time so MSE is used for all types of neural networks.  

Finally, the bias and weight costs are divided by the number of sets of inputs to get the 

average costs for all the sets in the batch. Then the update weight and biases function is called 

to pass these costs into the relevant layers to adjust the weights and biases.  

There were a couple of changes made to the neural network class that differentiates it from 

the initial design. The first change was the separation of the backpropagation function to have 

the update weights and biases separate from the calculation of the costs. This was done so 

that the costs can be summed and averaged for all the sets in the batch before updating the 

weights. Also, the train network class was added to tie together the backpropagate and 

update functions. This was only needed for the implementation of SGD which requires a 

different batch of inputs and expected outputs for each iteration of the training of the 

network.  

Originally, only gradient descent was planned to be used but after testing the network with a 

training set that had a large number of sets of inputs, it was found that the network would 

take too long to train. SGD optimises the times by creating a smaller set of inputs called a 

batch in which the inputs in the batch are chosen at random. This works because the costs for 

a smaller subset are likely to be representative of the costs for the whole set of inputs and 

speed up the training because fewer inputs are being trained on (Bottou, 2010).  

In reflection, the implementation of the network class works well for the training of most 

neural networks but cross-entropy needs to be added for better error calculation of 

classification neural networks. Also, training of the networks works for each iteration but the 

handling of each iteration should be done by this class and it currently is handled outside of 
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this class. So another function needs to be added in the future that simply calls the train 

network function for each iteration of the training so that the randomization of the batches 

is done within the class. Ideally, this function will only need to be called once so that it makes 

it easier for the user to train the network because they don’t have to do the batch preparation 

themselves.  

7.5 Neural Network Creation and Training 

A neural network can be created using the library by first creating the separate layers and 

passing them into a neural network object using the add layer function. For the creation of 

each layer, the inputs, weights, biases, and activation type will need to be passed into the 

constructor. This works well for networks which have predefined weights and biases but there 

is no option for the weights and biases to be initialized by the layers and will have to be done 

by the user. This is good for pre-trained networks but this is an issue for networks that need 

to be trained because the initialization of weights and biases are crucial to how well a network 

trains. Some of the methods of initialization that could be included in the layer classes are the 

He initialization and Xavier initialization (Yadav, 2018).  

The process of training a network requires a loop in which the train network function is called 

for each iteration and the inputs and expected outputs for that iteration need to be passed 

in. As previously mentioned, the process of training a network can be made easier for the 

user if the iterations are handled by the network class. This is so that the handling of inputs 

for each batch can be handled by the network.  
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8.0 Testing  

As previously mentioned in the design and implementation, part of the testing strategy for 

the artefact is unit testing the different aspects of the library. The purpose of the unit testing 

is to test all the possible outcomes of the functions using test inputs and the expected 

outputs. An example of this sort of test is the test for the activation functions. There are three 

tests for each activation function which takes in three inputs: a negative number, a positive 

number and the number zero. Using these numbers means that the activation functions can 

be tested for different situations and accounts for outliers therefore if the three tests pass 

then the activation functions will work for all situations. There are also unit tests that test the 

failure of certain functions when the expected output is an assertion. These are referred to 

as death tests and have been used to test that functions such as the set inputs functions fail 

when the incorrect number of inputs were passed in.  

8.1 The implementation of the Unit Testing 

Unit testing has been implemented using the Google Test adaptor for Visual Studio. There is 

a multitude of different unit testing applications. One of the reasons why Google test was 

used is because it has integration with Visual Studio. This makes the process of creating and 

linking the tests to the library easier to do within Visual Studio and it allows the unit tests to 

be created in a separate project so that the unit testing can be run separately from the main 

project. As well as this, the integration of the Google tests in Visual Studio means that the unit 

tests can be debugged using the visual studio debugging tools. This means that when the unit 

tests failed, they were easily debugged to fix the error.  

Another reason it was chosen is that classes that inherit from a base test class can be created 

to initialize the variables for a set of tests. For example, there is a connected layer class which 

initializes the inputs, weights, biases and the layer pointer. This means that all the connected 

layer tests can use the same variables without the need to re-initialize them for each test. On 

top of this, this allows the tests to be separated based upon which class they are testing so it 

makes it clearer to see which test has failed and the class that test has failed on. This is helpful 

considering that each class will have similar tests. For example, there is a constructor test for 

each of the layer classes so separating the tests based on the layer helps to define which 

layer’s constructor may have failed.  
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The final reason Google unit testing was chosen is because Google testing has a function 

called expect float which accounts for the floating-point error that can occur. This is useful for 

the testing of the artefact because all the maths is calculated using floats for the inputs and 

outputs. The expect float function accounts for the floating-point error by rounding the 

output and expect outputs to six decimal points before evaluating them to check if they are 

equal. 

8.2 Example Network Tests 

Another testing method that was used for the artefact was the creation and testing of two 

different neural networks: one which uses connected layers to emulate an XOR gate and one 

which uses a convolutional, pooling and connected layer for the classification of images of 

digits from 0 to 9. The success of the two networks will be determined based on the loss 

decreasing for each iteration of the training and the testing of the network once it has been 

trained.  

The network that emulates the XOR gate is an example of a regression neural network that 

tests the network’s suitability for creating and training a simple two-layer network using the 

library. As previously mentioned above, the success of the network will be determined by 

tracking the loss after each iteration and testing the network after it has been trained. The 

loss of the network is tracked by getting the loss using the get cost function in the network 

class and pushing it into a vector array of floats. This array of floats is passed into a function 

that uses the loss values to draw a graph showing the loss over the iterations. This function 

uses a Github repository to draw the graph and output it to a file (Johansen, 2021). The 

network is then tested using the same inputs as the network was trained with. 

The classification neural network is a CNN consisting of a convolutional, pooling and a 

connected layer that takes images of hand-drawn digits and predicts the digits that are drawn 

in each image. The data used for training this network are selected at random from a larger 

dataset and added to a batch of size 150 images for each iteration. Once trained, the network 

is tested against 100 images from a different set of images selected at random from the 

testing dataset. Both of these datasets comprise images from the MNIST dataset which is the 

most commonly used dataset for classification (LeCun, et al., 1998). The MNIST dataset 
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images are parsed using a function which creates a 1D vector array of values between 0 and 

255 that represent the greyscale pixel values of each pixel in an image (Wicht, 2019). 

9.0 Results 

9.1.0 Unit Tests Results 

Unit tests were used as part of the iterative design process so when the unit tests failed, the 

code was modified until the unit tests passed. As a result, in its current state, most of the unit 

tests pass because the issues causing the failure of these tests have been fixed before moving 

on to other parts of the implementation. However, the softmax activation function unit test 

is the only test that failed. This is because the softmax function was added last to calculate 

the outputs for the classification CNN. Therefore, there was not enough time to fix the issues 

with the softmax function. As shown below in figure 20, the outputs of the softmax function 

are not correct to six decimal places. However, they are all correct to five decimal places which 

were deemed satisfactory for the current solution but will need to be fixed in the future.  

 

Figure 10: Output from the softmax unit tests 

9.2.0 Neural Network Results 

After training the XOR gate neural network for 500,000 iterations, the loss decreases for each 

iteration in an exponential curve as shown in figure 21 below. This loss graph is similar to what 
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is expected of a typical loss graph because the loss does not vary as it decreases and follows 

an exponential curve that decreases heavily at the start and decreases less and less over the 

iterations. This shows that the neural network is training correctly the get closer to the 

expected outputs.  

 

Figure 11: Cost output of the XOR Neural Network 

After the network was trained, the outputs are shown in figure 22 below. The expected 

outputs are 0, 1, 1, 0 and so the outputs of the network are off by two decimal places. This is 

a positive result because these outputs show that the network is trending towards the 

expected outputs and therefore if the network is trained for more iterations, the outputs will 

be closer to the expected outputs. The training of the neural network took 82 seconds to run 

in release mode on a CPU. Even though this did not take a long time to train, the process can 

be sped up drastically by running it on a GPU using CUDA cores. 
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Figure 12: Output of the network after being trained using 500000 iterations 

The classification neural network was trained for 1000 iterations and the loss graph is shown 

in figure 23 below. The trend of the loss is like that of the previous neural network because it 

follows an exponential curve. However, it differs because the variation in the loss values 

increases as the number of iterations increases. This is not expected because the loss should 

not be varying to that extent but overall the trend of the loss is good because it is still 

decreasing. Because of this variation in the loss, it is difficult to say whether the loss will keep 

decreasing if the number of iterations increases. This can be improved in the future by 

implementing cross-entropy to calculate the loss so that the correct loss values are calculated 

for classification neural networks. 

 

Figure 13:Loss graph of the CNN for 1000 iterations 
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The output of the trained CNN is shown in figure 24 below. After 1000 test inputs were fed 

through the network, it predicted 905 correct which gives the network accuracy of 91%. This 

is a good result because this accuracy suggests that the network has been correctly trained to 

predict the digits in the images. Consequently, this shows good progress towards making an 

object detector because classification is part of object detection. However, the network took 

73 seconds to train using 1000 iterations which is slow in comparison to the time it would 

take to train this network on a GPU. Therefore, an object detector network would take a lot 

longer to train because there will be more layers in an object detector. So before, 

implementing the functions needed for object detection, the library will have to be modified 

to allow these networks to be trained on a GPU using the CUDA cores. 

 

Figure 14: Output of the trained classification CNN 
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 10.0 Critical Evaluation  

10.1 The success of the project 

To determine the success of the project as a whole, the criteria used are the objectives that 

were defined at the start of the project. The first objective is to research the current state of 

object detection. This was completed by conducting research into the background of object 

detection to see how the techniques have changed and improved over time. The research 

into the background was completed thoroughly to ensure that the most prominent 

innovations in object detection were mentioned. Therefore, the first objective was 

successfully met because it gives an understanding of how the current state of object 

detection has come to be. 

The second objective is to research and analyse the different methods of object detection to 

find the best method for this project. This was completed by first researching the two object 

detectors: R-CNN and YOLO. Then these object detectors were evaluated using the criteria 

needed specifically for this project. The research into these two detectors comprised of 

detailing the methods of these detectors to get an understanding of how they work whilst 

also highlighting the differences in these methods. The key part of this research is these 

differences because they helped with the evaluation of these methods. The evaluation of 

these methods looked at comparing the two methods in three aspects: accuracy, speed and 

utility. These criteria were chosen because they are the best ways to determine the most 

suitable object detector for this project. Upon reflection, the research into the two object 

detectors was very good at finding the best method of object detection for this project 

because these methods were compared with the end purpose in mind. Therefore, the second 

objective was successfully met using the analysis of R-CNN and YOLO.  

The third objective is to create and train an object detector that uses both real and synthetic 

data. After researching the methods of creating and training the object detectors, it was 

found that this was not possible to implement an object detector in the given time frame as 

explained further in the scope section of this report. Therefore, this objective had to be 

reworked to give a scope that was small enough to complete in the given time frame. 

Consequently, the objective of the artefact was to implement a neural network library 

capable of producing and training a neural network that can classify images into categories. 
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This objective was completed as shown in the example network that was trained using the 

MNIST dataset. This network had a 91% accuracy of classifying drawn digits from 0 to 9 which 

means it is possible to create and train a neural network using the artefact library that can 

classify images into categories. Classification is a part of object detection so this shows that, 

if given more time, the library can be built upon to create and train an object detector. Overall, 

the artefact does not fully complete the third objective but is a good base to build upon to 

fully complete it.  

The fourth objective is to improve the accuracy and speed of the object detector to work in 

real-time. The current state of the artefact was found, in the testing phase, to take too long 

to train for it to work in real-time. This shows that optimizations will need to be made to the 

library to speed up the time it takes to train and test the networks made using the library. So 

the fourth objective was not met.  

The fifth objective is to implement the object detector in a synthetic environment to test its 

viability. This objective was not met because the artefact is not in a state to create an object 

detector and therefore it cannot be tested in a synthetic environment. However, given more 

time, the library can be built upon to complete this objective.  

The time management of this project is illustrated in the Gantt planner (see appendix 1). The 

weeks surrounded by a thick border show the planned breaks in which no work should be 

done in those weeks. Even though the majority of tasks were done in the time frames given, 

there were a couple of instances where the tasks overran. The biggest examples of these are 

the write up of implementation and the testing which was started two weeks after the 

planned weeks. This happened because implementation had to be finished before it could be 

fully tested and written up. As a result, these tasks overran into weeks 28 and 29 which were 

planned as a break. Regardless, all the tasks were done before the evaluation was planned to 

start and so the evaluation took one week less than expected. 

In conclusion, an adequate amount of research has been done into potential solutions to this 

project. However, the artefact produced does not provide a solution to the original solution 

but is a good start considering the allotted time frame given for this project.  
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10.2 Potential changes if this project was repeated 

If this project was repeated, the first aspect of this project that would be changed is to adjust 

the objectives of this project to reflect something that would be possible to implement in the 

given time frame. This is so that the research is done to find a solution to the objectives that 

will be more relevant to the artefact implemented. Also, the artefact implemented will likely 

be able to solve the adjusted objectives if the target objectives are adjusted with the allotted 

time frame considered. The adjusted objectives will likely be to research into and implement 

a classification neural network library which can be used to classify objects that are seen from 

a helicopter camera.  

If the project was repeated with the goal of building a similar artefact, the main change that 

would be made to the artefact is the use of standard float arrays instead of vector arrays. The 

use of standard arrays would have sped up the process of training and testing a neural 

network. This is because standard arrays are quicker to access and modify the values in the 

array which is something that is done often with the calculation of the outputs and the 

backpropagation of neural networks.  

10.3 Extensions that could be made to this project 

The first feature that is recommended to extend the artefact is the addition of cross-entropy 

for the calculation of the loss for classification neural networks. This is recommended because 

the current calculation for the loss, MSE, is used for regressions neural networks but it is not 

a good calculation for the loss of classification neural networks. The reason why cross-entropy 

is better than MSE is that it helps to train the network faster and improves the generalization 

of the classes to categorize (Bishop, 2006).  

Another feature that could be added to the library is momentum to the training process. 

Momentum is used to modify the calculation of the weight and biases costs to use an 

exponential weighted average of the costs instead of just the average of the costs. By doing 

this, it converges faster than just using gradient descent and therefore trains at a steadier 

rate. This would be a solution to the variation of the loss shown in the results section. A 

visualization of this comparison is shown in figure 25 below (Michelucci, 2018).  
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Figure 15: Visualization of the comparison between gradient descent with and without momentum 

A final feature that could be added to the library is the initialization of the weights in the layer 

classes. The initialization of the weights can make the difference when it comes to the 

network converging and therefore must be initialized properly for the network to train 

correctly. Currently, the weights must be initialized and passed into the layers but this should 

be changed so that the user does not initialize the weights and is instead initialized in the 

constructor using the following two algorithms: Xavier and He weight initialization. Xavier 

initialization is used when the activation function is sigmoid or tanh for the layer. He 

initialization is used when ReLU as the activation function for the layer (Goodfellow, et al., 

2016).  

10.4 Future Work 

The project could be worked on further as part of a master’s degree to build upon the library 

to make object detection neural networks. These neural networks could then be trained using 

a mix of synthetic and real data to see if synthetic data is viable as an alternative for real data 

when training object detection neural networks. The trained networks could be tested in a 

synthetic environment to test their viability in real-time. The research for this project will have 

to look at the techniques used in YOLO that help to speed up object detection and potential 

methods that improve the accuracy of the networks.   
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Appendix 3: UML Class Diagram 
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